Your direct supplier on solar inverter, solar controller, solar battery , solar panel, solar lamp and solar systems. Welcome you invest our new factory and work together!
Hello,Welcome!  Login  Register      sitemaps | Board | My Orders | My Wellsee
Hot search: Solar inverter | voltage inverter | charger inverter | sine wave inverter | off-grid inverter | solar controller | MPPT | solar panel | charge controller | solar regulator
Your Position: > Knowledge >> Solar Battery >>> Lead–acid battery knowledge from Wellsee

Lead–acid battery knowledge from Wellsee

Cindy / 2013-08-31
[B] [M] [S]

 Lead-acid batteries, invented in 1859 by French physicist Gaston Planté, are the oldest type of rechargeable battery. Despite having a very low energy-to-weight ratio and a low energy-to-volume ratio, their ability to supply high surge currents means that the cells maintain a relatively large power-to-weight ratio. These features, along with their low cost, make them attractive for use in motor vehicles to provide the high current required by automobile starter motors.

 

 

 

 

 

 

 

2 Voltages for common usages

These are general voltage ranges for six-cell lead-acid batteries:

  • Open-circuit (quiescent) at full charge: 12.6 V to 12.8 V (2.10-2.13V per cell)
  • Open-circuit at full discharge: 11.8 V to 12.0 V
  • Loaded at full discharge: 10.5 V.
  • Continuous-preservation (float) charging: 13.4 V for gelled electrolyte; 13.5 V for AGM (absorbed glass mat) and 13.8 V for flooded cells
  1. All voltages are at 20 °C (68 °F), and must be adjusted -0.022V/°C for temperature changes.
  2. Float voltage recommendations vary, according to the manufacturer's recommendation.
  3. Precise float voltage (±0.05 V) is critical to longevity; insufficient voltage (causes sulfation) which is almost as detrimental as excessive voltage (causing corrosionand electrolyte loss)
  • Typical (daily) charging: 14.2 V to 14.5 V (depending on manufacturer's recommendation)
  • Equalization charging (for flooded lead acids): 15 V for no more than 2 hours. Battery temperature must be monitored.
  • Gassing threshold: 14.4 V
  • After full charge, terminal voltage drops quickly to 13.2 V and then slowly to 12.6 V.

Portable batteries, such as for miners' cap lamps (headlamps) typically have two cells, and use one third of these voltages.

 

3 Measuring the charge level

Because the electrolyte takes part in the charge-discharge reaction, this battery has one major advantage over other chemistries. It is relatively simple to determine the state of charge by merely measuring the specific gravity (S.G.) of the electrolyte, the S.G. falling as the battery discharges. Some battery designs include a simple hydrometer using colored floating balls of differing density. When used in diesel-electric submarines, the S.G. was regularly measured and written on a blackboard in the control room to indicate how much longer the boat could remain submerged.
 
A battery's open-circuit voltage can be used to estimate the state of charge, in this case for a 12 volt battery.[3]

4 Construction

4.1 Plates

The lead acid cell can be demonstrated using sheet lead plates for the two electrodes. However such a construction produces only around one ampere for roughly postcard sized plates, and for only a few minutes.

Gaston Planté found a way to provide a much larger effective surface area. In Planté's design, the positive and negative plates were formed of two spirals of lead foil, separated with a sheet of cloth and coiled up. The cells initially had low capacity, so a slow process of "forming" was required to corrode the lead foils, creating lead dioxide on the plates and roughing them to increase surface area. Initially this process used electricity from primary batteries; when generators became available after 1870, the cost of production of batteries greatly declined.Planté plates are still used in some stationary applications, where the plates are mechanically grooved to increase their surface area.

Faure pasted-plate construction is typical of automotive batteries. Each plate consists of a rectangular lead grid alloyed with antimony or calcium to improve the mechanical characteristics. The holes of the grid are filled with a paste of red lead and 33% dilute sulfuric acid. (Different manufacturers vary the mixture). The paste is pressed into the holes in the grid which are slightly tapered on both sides to better retain the paste. This porous paste allows the acid to react with the lead inside the plate, increasing the surface area many fold. At this stage the positive and negative plates are similar, however expanders[clarification needed] and additives[clarification needed] vary their internal chemistry to assist in operation. Once dry, the plates are stacked with suitable separators and inserted in the battery container. An odd number of plates is usually used, with one more positive plate than negative. Each alternate plate is connected.

The positive plates are the chocolate brown color of Lead(IV) Oxide, and the negative are the slate gray of 'spongy' lead at the time of manufacture. In this charged state the plates are called 'formed'.

One of the problems with the plates is that the plates increase in size as the active material absorbs sulfate from the acid during discharge, and decrease as they give up the sulfate during charging. This causes the plates to gradually shed the paste. It is important that there is room underneath the plates to catch this shed material. If it reaches the plates, the cell short-circuits.

The paste contains carbon black, blanc fixe (barium sulfate) and lignosulfonate. The blanc fixe acts as a seed crystal for the lead–to–lead sulfate reaction. The blanc fixe must be fully dispersed in the paste in order for it to be effective. The lignosulfonate prevents the negative plate from forming a solid mass during the discharge cycle, instead enabling the formation of long needle–like crystals. The long crystals have more surface area and are easily converted back to the original state on charging. Carbon black counteracts the effect of inhibiting formation caused by the lignosulfonates. Sulfonated naphthalene condensate dispersant is a more effective expander than lignosulfonate and speeds up formation. This dispersant improves dispersion of barium sulfate in the paste, reduces hydroset time, produces a more breakage-resistant plate, reduces fine lead particles and thereby improves handling and pasting characteristics. It extends battery life by increasing end–of–charge voltage. Sulfonated naphthalene requires about one-third to one-half the amount of lignosulfonate and is stable to higher temperatures.

About 60% of the weight of an automotive-type lead-acid battery rated around 60 Ah (8.7 kg of a 14.5 kg battery) is lead or internal parts made of lead; the balance is electrolyte, separators, and the case.

4.2 Separators

Separators between the positive and negative plates prevent short-circuit through physical contact, mostly through dendrites (‘treeing’), but also through shedding of the active material. Separators obstruct the flow of ions between the plates and increase the internal resistance of the cell. Wood, rubber, glass fiber mat, cellulose, and PVC orpolyethylene plastic have been used to make separators. Wood was the original choice, but deteriorated in the acid electrolyte. Rubber separators were stable in the battery acid.

An effective separator must possess a number of mechanical properties; such as permeability, porosity, pore size distribution, specific surface area, mechanical design and strength, electrical resistance, ionic conductivity, and chemical compatibility with the electrolyte. In service, the separator must have good resistance to acid andoxidation. The area of the separator must be a little larger than the area of the plates to prevent material shorting between the plates. The separators must remain stable over the battery's operating temperature range.

5 Applications

Wet cell stand-by (stationary) batteries designed for deep discharge are commonly used in large backup power supplies for telephone and computer centers, grid energy storage, and off-grid household electric power systems. Lead-acid batteries are used in emergency lighting in case of power failure.

Traction (propulsion) batteries are used for in golf carts and other battery electric vehicles. Large lead-acid batteries are also used to power the electric motors in diesel-electric (conventional) submarines and are used on nuclear submarines as well. Motor vehicle starting, lighting and ignition (SLI) batteries (car batteries) provides current for starting internal combustion engines.

Valve-regulated lead acid batteries cannot spill their electrolyte. They are used in back-up power supplies for alarm and smaller computer systems (particularly in uninterruptible power supplies) and for electric scooters, electrified bicycles, marine applications, battery electric vehicles or micro hybrid vehicles, and motorcycles.

Lead-acid batteries were used to supply the filament (heater) voltage (usually between 2 and 12 volts with 2 V being most common) in early vacuum tube (valve) radio receivers.

 

6 Cycles

6.1 Starting batteries

Lead acid batteries designed for starting automotive engines are not designed for deep discharge. They have a large number of thin plates designed for maximum surface area, and therefore maximum current output, but which can easily be damaged by deep discharge. Repeated deep discharges will result in capacity loss and ultimately in premature failure, as the electrodes disintegrate due to mechanical stresses that arise from cycling. Starting batteries kept on continuous float charge will have corrosion in the electrodes and result in premature failure. Starting batteries should be kept open circuit but charged regularly (at least once every two weeks) to prevent sulfation.

Starting batteries are lighter weight than deep cycle batteries of the same battery dimensions, because the cell plates do not extend all the way to the bottom of the battery case. This allows loose disintegrated lead to fall off the plates and collect under the cells, to prolong the service life of the battery. If this loose debris rises high enough it can touch the plates and lead to failure of a cell, resulting in loss of battery voltage and capacity.

 

6.2 Deep cycle batteries

Specially designed deep-cycle cells are much less susceptible to degradation due to cycling, and are required for applications where the batteries are regularly discharged, such as photovoltaic systems, electric vehicles (forklift, golf cart, electric cars and other) and uninterruptible power supplies. These batteries have thicker plates that can deliver less peak current, but can withstand frequent discharging.

Some batteries are designed as a compromise between starter (high-current) and deep cycle batteries. They are able to be discharged to a greater degree than automotive batteries, but less so than deep cycle batteries. They may be referred to as "Marine/Motorhome" batteries, or "leisure batteries"

 

6.3 Fast and slow charge and discharge

Charge current needs to match the ability of the battery to absorb the energy. Using too large of a charge current on a small battery can lead to boiling and venting of the electrolyte. In this image a VRLAbattery case has ballooned due to the high gas pressure developed during overcharge.

The capacity of a lead-acid battery is not a fixed quantity but varies according to how quickly it is discharged. An empirical relationship exists between discharge rate and capacity, known as Peukert's law.

When a battery is charged or discharged, this initially affects only the reacting chemicals, which are at the interface between the electrodes and the electrolyte. With time, the charge stored in the chemicals at the interface, often called "interface charge", spreads bydiffusion of these chemicals throughout the volume of the active material.

If a battery has been completely discharged (e.g. the car lights were left on overnight) and next is given a fast charge for only a few minutes, then during the short charging time it develops only a charge near the interface. The battery voltage may rise to be close to the charger voltage so that the charging current decreases significantly. After a few hours this interface charge will spread to the volume of the electrode and electrolyte, leading to an interface charge so low that it may be insufficient to start the car.

On the other hand, if the battery is given a slow charge, which takes longer, then the battery will become more fully charged. During a slow charge the interface charge has time to redistribute to the volume of the electrodes and electrolyte, while being replenished by the charger. The battery voltage remains below the charger voltage throughout this process allowing charge to flow into the battery.

Similarly, if a battery is subject to a fast discharge (such as starting a car, a current draw of more than 100 amps) for a few minutes, it will appear to go dead, exhibiting reduced voltage and power. However, it may have only lost its interface charge. If the discharge is halted for a few minutes the battery may resume normal operation at the appropriate voltage and power for its state of discharge. On the other hand, if a battery is subject to a slow, deep discharge (such as leaving the car lights on, a current draw of less than 7 amps) for hours, then any observed reduction in battery performance is likely permanent.

 

7. Valve regulated

In a valve regulated lead acid (VRLA) battery the hydrogen and oxygen produced in the cells largely recombine into water. Leakage is minimal, although some electrolyte still escapes if the recombination cannot keep up with gas evolution. Since VRLA batteries do not require (and make impossible) regular checking of the electrolyte level, they have been called maintenance free batteries. However, this is somewhat of a misnomer. VRLA cells do require maintenance. As electrolyte is lost, VRLA cells "dry-out" and lose capacity. This can be detected by taking regular internal resistance, conductance or impedance measurements. Regular testing reveals whether more involved testing and maintenance is required. Recent maintenance procedures have been developed allowing "rehydration", often restoring significant amounts of lost capacity.

VRLA types became popular on motorcycles around 1983, because the acid electrolyte is absorbed into the separator, so it cannot spill. The separator also helps them better withstand vibration. They are also popular in stationary applications such as telecommunications sites, due to their small footprint and installation flexibility.

The electrical characteristics of VRLA batteries differ somewhat from wet-cell lead-acid batteries, requiring caution in charging and discharging.

 

8 Sulfation

Lead-acid batteries lose the ability to hold a charge when discharged for too long due to sulfation, the crystallization of lead sulfate. They generate electricity through a double sulfate chemical reaction. Lead and Lead(IV) Oxide, which are the active materials on the battery's plates, react with sulfuric acid in the electrolyte to form lead sulfate. The lead sulfate first forms in a finely divided, amorphous state, and easily reverts to lead, lead oxide and sulfuric acid when the battery recharges. As batteries cycle through numerous discharge and charges, the lead sulfate slowly converts to a stable crystalline form that no longer dissolves on recharging. Thus, not all the lead is returned to the battery plates, and the amount of usable active material necessary for electricity generation declines over time.

Sulfation occurs in all lead-acid batteries during normal operation. It clogs the grids, impedes recharging and ultimately expands, cracking the plates and destroying the battery. In addition, the sulfate portion (of the lead sulfate) is not returned to the electrolyte as sulfuric acid. The large crystals physically block the electrolyte from entering the pores of the plates. Sulfation can be avoided if the battery is fully recharged immediately after a discharge cycle.

Sulfation also affects the charging cycle, resulting in longer charging times, less efficient and incomplete charging, and higher battery temperatures.

The process can often be at least partially prevented and/or reversed by a desulfation technique called pulse conditioning, in which short but powerful current surges are repeatedly sent through the damaged battery. Over time, this procedure tends to break down and dissolve the sulfate crystals, restoring some capacity.

Higher temperature speeds both desulfation and sulfation, although too much heat damages the battery by accelerating corrosion.

 

9 Stratification

A typical lead-acid battery contains a mixture with varying concentrations of water and acid. There is a slight difference in density between water and acid, and if the battery is allowed to sit idle for long periods of time, the mixture can separate into distinct layers with the water rising to the top and the acid sinking to the bottom. This results in a difference of acid concentration across the surface of the plates, and can lead to greater corrosion of the bottom half of the plates.

Frequent charging and discharging tends to stir up the mixture, since the electrolysis of water during charging forms hydrogen and oxygen bubbles that rise and displace the liquid as the bubbles move upward. Batteries in moving vehicles are also subject to sloshing and splashing in the cells, as the vehicle accelerates, brakes, and turns.

 

10 Risk of explosion


Car battery after explosion

Excessive charging electrolyzes some of the water emitting hydrogen and oxygen. This process is known as "gassing". Wet cells have open vents to release any gas produced, and VRLA batteries rely on valves fitted to each cell. Wet cells come with catalytic caps to re